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We derive an equation satisfied by the dissipation rate correlation function,
OE(xF+rF, t+y) E(xF, t)P for the homogeneous, isotropic state of fully-developed
turbulence from the the Navier–Stokes equation. In the equal time limit we
show that the equation leads directly to two intermittency exponents m1=2 − z6

and m2=z'

4 − z4, where the z’s are exponents of velocity structure functions
and z'

4 is a dynamical exponent characterizing the fourth order structure func-
tion. We discuss the contributions of the pressure terms to the equation and the
consequences of hyperscaling.
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1. INTRODUCTION

The statistical properties of the energy dissipation rate E(xF, t) defined by

E(xF, t)=
n

2
C
i, j

(“iuj+“jui)2 (1)

where “i=“/“xi have played a crucial role in our understanding of
fully-developed turbulence in incompressible fluids. (1–3) In the original
Kolmogorov theory E is replaced by OEP and the spatial fluctuations are
ignored; the effect of fluctuations of E pointed out by Landau have been
explored in the context of the lognormal model and its multifractal



generalizations. (4) The intermittent behavior of turbulent fluctuations is
reflected in the power-law behavior of the equal-time correlations of E:

OE(xF) E(xF+rF)P ’ (r/L)−m (2)

where L is a length scale characteristic of the large-scale flow and r=|rF|
belongs to the inertial range. Simple dimensional analysis, noting that the
dimension of E is V3/L, yields the identification m=2 − z6; the exponents of
the qth order (longitudinal) structure function, zq, is defined by

Sq — O[duF · r̂]qP ’ (r/L)zq (3)

where duF=uF(xF+rF, t) − uF(xF, t). Within the original Kolmogorov theory
z6=2 and consequently, m=0. Thus the deviation of m from zero is a
measure of the degree of intermittency and is an important quantity
for understanding fully developed turbulence. The breakdown of simple
Kolmogorov scaling has been studied experimentally and a review of the
experiments (5) gives a ‘‘best’’ estimate for m of 0.25 ± 0.05 which is consis-
tent with the experimentally measured value (1) of z6 % 1.8. In this Letter we
provide a simple and direct derivation of the scaling relations satisfied by m

for the Navier–Stokes equation by deriving an equation satisfied by the
dissipation rate correlations. The equation for the dissipation rate contains
not only a contribution from a second spatial derivative of an appropriate
sixth-order structure function, which yields the above-mentioned value for
m=2 − z6, but also that from a second temporal derivative of a fourth-
order structure function; there are, in addition, pressure-dependent terms
which are exhibited explicitly and no other velocity-dependent terms. The
use of dynamical structure functions, i.e., in Eq. (3) duF=uF(xF+rF, t+y) −
uF(xF, t), is key to our derivation. (6) Both spatial and temporal derivatives of
the dynamical structure functions occur naturally and the equal time limit
of the derivatives is related to the correlation of the energy dissipation rate.
An earlier paper by us (7) provided a justification for the same result in the
context of the stochastic Burgers equation and argued entirely by analogy
how the same results would arise in the Navier–Stokes case. The heuristic
discussion depended on the mathematical similarity of some of the terms
which occur in detailed dynamical equations for the structure functions and
on an equation for the dissipation-rate correlations which was not explicitly
Galilean-invariant. In this paper we give a manifestly Galilean invariant
equation for the dissipation rate equation from which the dominant expo-
nents arise directly. We discuss moreover the contributions of the pressure
terms explicitly and argue that they do not yield more dominant behavior.
In the next section we present the derivation of the main equation; in the
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following section we discuss the contributions of the different terms to the
behavior of the dissipation rate correlation in the equal time limit, in par-
ticular, the terms which depend on the pressure, and the consequences of
hyperscaling. Many of the details of the calculations are relegated to
Appendices A–E.

2. DERIVATION OF THE EQUATION FOR DISSIPATION-RATE

CORRELATION

We consider the Navier–Stokes equation for an incompressible velocity
field uF(xF, t),

“tui(xF, t)+uj “ui/“xj=n N2ui − “p̃/“xi+fi (4)

where p̃=p/r and r is the constant density. We have employed the sum-
mation convention of summing over repeated indices. The system is driven
by a Gaussian, stochastic driving force fF(xF, t) with zero mean and variance
given by

O f̂i(kF, t) f̂j(kFŒ, t)P=Pij(kF) D(k) dkF+kFŒ, 0F d(t − tŒ) (5)

where Pij(kF) is the transverse projection operator given by dij − (kikj/k2).
The noise covariance D(k) is assumed to be peaked around k0 ’ 1/L with
a narrow width. The detailed form of the noise correlation is not impor-
tant; the stochastic forcing maintains a fully-developed turbulent state and
allows one to define averages as noise ensemble averages. We will find it
useful to define the quantity

Eij — n “aui “auj. (6)

The dissipation rate E (cf. Eq. (1)) of an incompressible fluid obeys the
relation

E=Eii − n N2p̃. (7)

We remark that OEijP 3 dij in isotropic turbulence.
We first describe an illustrative calculation which exemplifies our

method; the complete calculation is discussed later. We employ the nota-
tion xF=RF+(1/2) rF, t=T+(1/2) y and xFŒ=RF − (1/2) rF, tŒ=T − (1/2) y.
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Multiplying the Navier–Stokes equation for ui=ui(xF, t) by ui, summing
over i, and using nui N2ui=nN2(u2/2) − Eii one finds

− Eii+nN2(u2/2)+fF · uF=ui “tui+uiul “lui − ui “i p̃. (8)

We write a similar equation for u −

i=ui(xFŒ, tŒ) and multiply the two equa-
tions and average over the homogenous, steady state of isotropic turbu-
lence. This yields

OEii E
−

jjP−
n

2
N2

r OEiiuŒ
2+E −

iiu
2P+

n2

4
N2

r N2
rOu2uŒ

2P+noise terms

= −
1
4

“
2

“y2 Ou2uŒ
2P−

1
2

“
2

“y “ri
O(ui+u −

i) u2uŒ
2P

−
1
4

“
2

“ri “rj
Ouiuju2uŒ

2P+pressure terms. (9)

The second and third terms on the left-hand side are negligible in the iner-
tial range; this is evident since the correlation function Ou2uŒ

2P is finite
in the inertial range and when multiplied by n vanishes as n Q 0. In the
second term one factor of n has been absorbed into obtaining Eii, a finite
quantity, and again the finite expression OEiiuŒ

2+E −

iiu
2P is multiplied by n

and thus vanishes in the n Q 0 limit. (8) We immediately see that the veloc-
ity terms on the right-hand side of the above equation consist of a second
temporal derivative of a fourth-order structure function and the second
spatial derivative of a sixth-order structure function. Of course, the equa-
tion is not manifestly form-invariant under Galilean transformations. We
also have to understand the role of the cross spatio-temporal derivative
and the pressure terms. We address these issues using a different version of
the above equation which is manifestly Galilean-invariant. We have not
displayed the noise and pressure terms since the above calculation merely
illustrates the simple steps involved in the derivation.

We present next the derivation of the equation for the dissipation rate
correlation function. It is useful to introduce the difference variable dui —

ui(xF, t) − uFi(xFŒ, tŒ). We proceed from the Navier–Stokes equation in two
different ways and combine the results appropriately. First, we consider the
product of the Navier–Stokes equation for ui with dui and sum over i
which yields

dui(nN2ui+fi)=dui
1Dui

Dt
+“i p̃2 (10)
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where we have used the summation convention. In the preceding the total
or convective derivative, “ui/“t+uj “ui/“xj, is denoted by Dui/Dt. We
multiply the above equation by the corresponding equation for the primed
variable to obtain

dui(nN2ui+fi) duj(nNŒ
2u −

j+f −

j)=dui
1Dui

Dt
+“i p̃2 duj

1Du −

j

DtŒ
+“

−

j p̃Œ 2 . (11)

We average over the homogeneous, steady state of turbulence. On the left-
hand side in addition to the noise terms, −OEii E

−

jj+Eij E
−

ijP are the only
terms which survive in the inertial range. The derivation of this result is
outlined in Appendix A. Next we consider the Navier–Stokes equation for
ui multiplied by duj and the corresponding equation for u −

i (multiplied
by duj) and take the product of the two equations summed over i and j;
this yields

duj(nN2ui+fi) duj(nNŒ
2u −

i+f −

i)=duj
1Dui

Dt
+“i p̃2 duj

1Du −

i

DtŒ
+“

−

i p̃Œ 2 . (12)

We then add twice Eq. (11) to Eq. (12). In the resulting equation we obtain
for the noise-independent parts on the left-hand side using the results of
Appendix A,

− 2OEii E
−

jj+2Eij E
−

ijP−
n2

4
(N2

r )2 O(duF · duF)2P

+nN2
r O(Eii+E −

ii) duF · duF+2(Eij+E −

ij) dui dujP. (13)

The only terms which survive in the inertial range are − 2OEii E
−

jjP−
4OEij E

−

ijP. The right-hand side of the resulting equation contains the follow-
ing terms, which we denote by C1, apart from the pressure-dependent
contributions:

C1 — 2 7dui
Dui

Dt
duj

Du −

j

DtŒ
8+7duj

Dui

Dt
duj

Du −

i

DtŒ
8 . (14)

We can show after some algebraic manipulations (Appendix B provides
some details) involving kinematic relations that the above expression for C1

is equal to the following

C1=−(1/16)(“
2/“ri “rj)Odui duj(duF · duF)2P+(1/4)(D̂2/D̂y2)O(duF · duF)2P

(15)
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where we have defined

D̂2

D̂y2
OfP —

“
2

“y2 OfP+
“

2

“y “ri
O(ui+u −

i) fP+
1
4

“
2

“ri “rj
O(ui+u −

i)(uj+u −

j) fP
(16)

the Galilean-invariant second derivative with respect to y of the expectation
value of a function of velocity differences. This shows explicitly the two key
terms, the second spatial derivative of the sixth-order structure function
and the (Galilean-invariant) second time derivative of a fourth-order
structure function. We have evaluated the pressure terms and find

2OEii E
−

jj+2Eij E
−

ijP+noise terms

=
1

16
“

2

“ri “rj
Odui duj(duF · duF)2P−

1
4

D̂2

D̂y2
O(duF · duF)2P

+O2 dui duj “i p̃ “
−

j p̃Œ+dui dui “j p̃ “
−

j p̃ŒP−
D̂
D̂y

O(“i p̃+“
−

i p̃Œ) dui duF · duFP

+
1
2

“r
a
O dua duF · duF dui(“ip̃ − “

−

i p̃Œ)P. (17)

We emphasize that apart from terms negligible in the inertial range in
the limit n Q 0 (most of which are displayed in Appendix A) the above
equation is exact. To complete our discussion we must evaluate the noise
terms and discuss the contribution of the pressure terms in Eq. (17). It is
useful to extract the parts which survive in the inertial range in the first two
terms of Eq. (17). It is easy to show from Eq. (7) that

OEii E
−

jjP=OEEŒP+nN2
rOEp̃Œ+EŒp̃P+n2N2

r N2
rOp̃p̃ŒP (18)

which is equal to OEEŒP in the inertial range. The other two terms in
Eq. (18) are finite correlation functions multiplied by powers of n and
hence, vanish in the inertial range. We consider OEij E

−

ijP next; we observe
that the diagonal elements (i=j) of O“iua “juaP yield the most singular
terms and only these survive in the n Q 0 limit which cuts off the short-dis-
tance singularities. With this observation we see that only the terms with
i=j contribute in OEij E

−

ijP; using the isotropy of the turbulent state we then
find that the first two terms on the left-hand side of Eq. (17) reduce to
(10/3)OEEŒP in the inertial range.

The equation for the dissipation rate correlation, Eq. (17) depends on
both rF and y. The noise terms can be simplified in the y Q 0 limit using the
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Donsker–Novikov–Varadhan result for Gaussian noise (9) and the non-
trivial term in the y Q 0+ limit is precisely (10/3)OEP2. Some of the details
of the derivation of this result can be found in Appendix C. Thus the left-
hand side of Eq. (17) reduces in the equal-time limit and in the inertial
range to (10/3)[OEEŒP−OEP2]. Finally, we have the complete equation for
the equal-time dissipation rate correlation in the inertial range

10
3

[OEEŒP−OEP2]=
1
16

“
2

“ri “rj
Odui duj(duF · duF)2P−

1
4

D̂2

D̂y2
O(duF · duF)2P

+O2 dui duj “i p̃ “
−

j p̃Œ+dui dui “j p̃ “
−

j p̃ŒP

−
D̂
D̂y

O(“i p̃+“
−

i p̃Œ) dui duF · duFP

+
1
2

“r
a
O dua duF · duF dui(“ip̃ − “

−

i p̃Œ)P. (19)

This is the first time, to the best of our knowledge, that this equation for
the dissipation rate correlation, with each term on the right-hand side
manifestly Galilean-invariant, appears in the literature.

3. DISCUSSION OF RESULTS

The equal-time behavior of OEEŒP is thus determined by the y Q 0 limit
of the terms occurring on the right-hand side of Eq. (19). There are two
terms which do not involve the pressure and these yield the two exponents
m1=2 − z6 and m2=z'

4 − z4. The first arises from the second spatial deriva-
tive of the sixth-order structure function. The second arises from the y Q 0
limit of the second temporal derivative of the fourth-order dynamical
structure function by postulating that the expansion of S4(r, y) in powers of
y contains y/rzŒ4 and y2/rzœ4 with different dynamical exponents characteriz-
ing different powers of y allowing for multifractality in temporal behavior.
The existence of Eq. (17) allows us to provide a transparent derivation
directly from the Navier–Stokes equation of the two exponents charac-
terizing dissipation-rate correlations, one which depends purely on the
static structure function exponent (2 − z6) and the other which involves
dynamical behavior (z'

4 − z4). We note that other relations such as
m=2z2 − z4 have been proposed in the literature. (14) L’vov and Procaccia (15)

obtained the relation m=2 − z6 based on fusion rules for equal time multi-
point correlation functions but they also pointed out another possible
scenario which yields m=2z2 − z4, the same exponent as in ref. 14.
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The need for a hierarchy of dynamical exponents follows from the
occurrence of temporal multiscaling in dynamical structure functions as has
been emphasized earlier by L’vov et al. (10) in the quasi-Lagrangian for-
malism; thus different order temporal derivatives of Sp(r, y) can lead to
different dynamical exponents. The y=0 limit of dynamical structure
functions was also considered by us for the stochastic Burgers problem
in ref. 11. In dealing with dynamical structure functions it is important to
remember that we have used the Eulerian formalism of the Navier–Stokes
equation; therefore, ordinary dynamic scaling and a fortiori, dynamic
multifractality, are complicated by the presence of sweeping terms. For
example, in Sp(r=0, y) (obtained from measurements of velocity differ-
ences at a given point at finite values of the time difference) the kinematic
exponent z=1 arising from sweeping occurs. (12) However, in the (Galilean
invariant) convective derivative which occurs in Eq. (19) in the y Q 0 limit
only the dynamical exponent occurs. Thus our equation for OEEŒP with the
right-hand side expressed in explicitly Galilean-invariant form neatly picks
out the intrinsic dynamical exponent.

Our results on the two dominant intermittency exponents, one arising
from the fourth order structure function, the second from a sixth-order
structure function, only hold if the pressure terms do not give a more
dominant contribution. We now discuss the pressure terms on the right-
hand side of Eq. (19); in Appendix D we have displayed the equations
satisfied by D̂2O(duF · duF)2P/D̂y2 and “

2Odui duj(duF · duF)2P/“ri “rj which can
be derived from the Navier–Stokes equation. The two pressure-dependent
terms in the last line of Eq. (19) occur in these equations and hence, their
behavior cannot be more dominant than the behavior we have deduced
above. The remaining pressure terms involving a product of “i p̃ and “

−

jp̃Œ in
the second line of Eq. (19) are discussed in Appendix E. By inverting the
equation satisfied by the pressure N2p̃=−“i “j(uiuj) which arises from
incompressibility we argue that these yield an exponent m1=2 − z6 and
nothing more dominant. The two pressure-dependent terms in the last line
of Eq. (19) treated in Appendix D can also be analyzed using the methods
of Appendix E and yield the same results. Thus, we have provided, we
believe, persuasive arguments in Appendices D and E that the pressure
terms do not yield more dominant behavior than that implied by the
exponents m1 and m2 and hence, do not alter our result. The advantage of
having the full equation for the dissipation-rate correlation which we have
derived is that the structure of the additional terms involving pressure is
explicit which should encourage further rigorous theoretical and detailed
experimental investigations of their behavior in the inertial range.

In the absence of an explicit calculation of the exponents which
characterize the spatial and temporal behavior of structure functions, one
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cannot decide which of the two exponents m1=2 − z6 and m2=z'

4 − z4

dominates the behavior of the dissipation rate correlations. We make the
following additional comments motivated by a similar strategy in the
theory of phase transitions, where as pointed out in ref. 13, an assertion of
the equality of the (singular part) free-energy density and the inverse corre-
lation volume yields the hyperscaling relations in critical phenomena. Thus
we make an ansatz that the first two terms on the right-hand side of
Eq. (19) are equally dominant. This leads to the identification

2 − z6=z'

4 − z4. (20)

Thus by invoking this hypothesis of hyperscaling in the behavior of the
equal-time dissipation rate correlations relation we obtain an interesting
connection between multifractality in spatial correlations and multifractal-
ity in temporal correlations; in addition, we obtain the standard result
m=2 − z6 which follows form the Refined Similarity Hypothesis. (1)

Finally, we comment on the conflicting experimental results, as dis-
cussed in ref. 5, obtained by measuring different subtracted, OEEŒP−OEP2,
and unsubtracted, OEEŒP, dissipation rate correlations. In the inertial range
we expect the term (L/r)m to dominate over the constant OEP2 term.
However, the experimental determination of m is rendered difficult by the
smallness of m. Only when r ° L does it not matter whether one uses the
subtracted or unsubtracted dissipation rate correlation functions, since the
term OEEŒP dominates. This is clear from the experimental discussion in
ref. 5. For r not much smaller than L the subtracted correlation function
should be used; this is the form which arises naturally in our theoretical
approach on the left hand side of the dissipation rate correlation equation,
Eq. (19).

APPENDIX A

We outline details of the computation of the term which occurs on the
left-hand side of Eq. (11), i.e., the term

n2Odui duj “a“aui “
−

b“
−

bu −

jP

where we have used the notation “a=“/“xa, “
−

b=“/“x −

b and employed the
summation convention. We will need the simple but key identity

nui “a“aui=
n

2
“a“a(uF · uF) − Eii (A.1)
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using the definition Eij=n “aui “auj. We expand dui duj to obtain four
terms; we consider the case where we have uiu

−

j and use the identity
displayed above to obtain

− n2 Oui “a“auiu
−

j “
−

b“
−

bu −

jP

=−OEii E
−

jjP+n N2
r
7E −

jj

uF · uF
2

+Eii
uFŒ · uFŒ

2
8−

n2

4
(N2

r )2 OuF · uF uFŒ · uFŒP. (A.2)

We observe that the terms in the second line consist of correlations which
are finite in the inertial range multiplied by n which tends to 0. We also
obtain similarly for the term containing u −

iuj,

− n2Ouj “a“auiu
−

i “
−

b“
−

bu −

jP

=−OEij E
−

ijP+
n

2
N2

rOE −

ij uiuj+Eij u
−

iu
−

jP+n2 “

“ra

“

“rb

Ouj “auiu
−

i “
−

bu −

jP. (A.3)

The other terms yield contributions which are negligible in the inertial
range, as for example,

− n2Ouiuj “a“aui “
−

b“
−

bu −

jP=−n2 N2
r

“

“ra

Oujuiu
−

j “auiP+nN2
rOuju

−

jEii+uiu
−

jEijP,
(A.4)

and a similar equation for the term with u −

iu
−

j. These equations show that
the only terms which survive in the inertial range are

−OEii E
−

jjP−OEij E
−

ijP. (A.5)

We can handle the terms which arise in Eq. (12) in a similar fashion to
obtain the results quoted in Eq. (13).

APPENDIX B

We provide a few of the details used in deriving Eq. (15) in this
appendix. The derivation relies on some kinematic relations which can be
obtained by using the independence of ui(xF, t) of xFŒ and tŒ, etc. and
incompressibility. Note that since “/“t=(1/2) “/“T+“/“y and the corre-
lations are independent of T in the steady state we can replace “/“y by
“/“t or by − “/“tŒ. Thus we find
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“
2

“y “ri
O(duF · duF)2 uiP=−7 “

“tŒ
“

“xi
[(duF · duF)2 ui]8

=−7 “

“tŒ
54duF · duF duk

“uk

“xi
ui
68

=74duF · duF
“u −

k

“tŒ
ui

“uk

“xi
+8dul

“u −

l

“tŒ
duk ui

“uk

“xi

8 . (B.1)

We perform a similar set of manipulations choosing to replace “
2/“y “ri by

“/“t “/“x −

i to obtain

“
2

“y “ri
O(duF · duF)2 u −

iP=74duF · duF
“uk

“t
u −

i

“u −

k

“x −

i

+8dul
“ul

“t
duk u −

i

“u −

k

“x −

i

8 . (B.2)

It is useful to note that the right-hand sides of the above two equations
contain precisely parts of

C1=2 7dui
Dui

Dt
duj

Du −

j

DtŒ
8+7duj

Dui

Dt
duj

Du −

i

DtŒ
8

defined in Eq. (14) which we wish to evaluate. The other terms can be
obtained by noting

“
2

“y2 O(duF · duF)2P= −7 “

“tŒ
“

“t
(duF · duF)28

=74duF · duF
“u −

i

“tŒ
“ui

“t
+8dui

“u −

i

“tŒ
duj

“uj

“t
8 . (B.3)

Along with a similar equation for

“
2

“ri“rj
O(duF · duF)2 (uiu

−

j+u −

iuj)P

we obtain the result quoted in Eq. (15).

APPENDIX C

We discuss the evaluation of the noise terms and the terms involving
OEij E

−

ijP which occur in Eq. (17).
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The noise terms can be evaluated using the Donsker–Novikov–
Varadhan result for an arbitrary functional F of the velocity field, given
the Gaussian noise characteristics in Eq. (5):

O f̂a(kF, t) F[û(qF, t)]P=
1
2

D̂ab(kF) 7 dF

dûb(−kF, t)
8 . (C.1)

We recall that the factor of 1/2 occurs because we take the average of the
limit in which the time variable in the noise approaches the time variable of
the velocity field from above and below. In particular, with the notation
employed in the paper we have

Ofiu
−

jP=0 and Of −

iujP=2
3 dijOEP

for y Q 0+; the first equation above is evident since the noise acts at a later
time. We will evaluate the noise-dependent terms which occur in Eqs. (11)
and (12). First consider the term

Odui dui(nN2uj f
−

j+nNŒ
2u −

j fj)P

which can be seen, using the Gaussian nature of the noise, to be equal to

2[Odui f
−

jPOdui nN2ujP+Odui fjPOdui nNŒ
2u −

jP].

Since Odui nNŒ
2u −

jP=OEP=−Odui nN2ujP and Odui f
−

jP=Odui fjP this term
vanishes. Similarly one can show that the other set of terms

2Odui duj(nN2ui f
−

j+nNŒ
2u −

jfi)P

also vanishes. The non-zero contributions come from

Odui dui fj f
−

jP=2Odui fjPOdui f
−

jP=2
3 OEP2 (C.2)

and

2Odui duj fi f
−

jP=2Odui fiPO duj f
−

jP+2Odui f
−

jPOduj fiP

=2 5OEPOEP+OEP
OEP

3
6=

8
3
OEP2. (C.3)

Together these yield the term 10OEP2/3 quoted in the text.
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APPENDIX D

First we present the equation for the Galilean-invariant time derivative
of the fourth-order structure function. The derivation is tedious and will
not be presented here; the equation is given by

D̂2

D̂y2
O(duF · duF)2P=−2

D̂
D̂y

OdEii duF · duF+2dEij dui dujP+noise terms

− 2
“

“ri
O(Eij+E −

ij) duj duF · duFP

−
1
4

“

“ri
O(“i p − “

−

ipŒ)(duF · duF)2P

− 2
D̂
D̂y

O(“i p+“
−

ipŒ) dui duF · duFP. (D.1)

The crucial point is that the time derivative of the pressure terms which
occur here are precisely those that occur in the final equation for the dissi-
pation rate correlations in Eq. (19). Thus the behavior of this term is not
more dominant than that implied by the second temporal derivative of the
fourth-order structure function which we have discussed in the text.

Since the pressure terms which we need also involve other spatial
derivatives, we need another equation to determine them. The equation for
the first spatial derivative of the sixth-order structure function was given in
our earlier paper (7) and we reproduce it here for completeness:

“

“rj
O(duF · duF)2 duj dukP

=
n

2
N2

rO[duF · duF]2 dukP− 4OduF · duF duk[Ê+ÊŒ]P− 6OduF · duF dui[Êki+Ê −

ki]P

− 2Odui duj duk[Êij+Ê −

ij]PO[duF · duF]2 dgk+4duk duF · duF duF · dgFP

− 2 7[duF · duF]2 “(p+pŒ)
“rk

8− 4 7duF · duF duk dui
“(p+pŒ)

“ri

8 . (D.2)

Observing that “(p+pŒ)/“ri=(1/2)(“i p − “
−

ipŒ) and taking the derivative
of the above equation with respect to rk we find that the last term in the

An Equation for the Dissipation Rate Correlation 383



above equation is precisely the one that occurs in Eq. (19); the other term
involving pressure in the above equation is of the same form as the term we
need and using isotropy and homogeneity one can argue that they yield
the same behavior. This provides the basis for our claim that the most
dominant behavior arising from the two pressure terms considered in this
appendix does not lead to behavior more dominant than those terms which
yield the exponents m1 and m2 discussed in the main body of the paper.

APPENDIX E

In this appendix we discuss contributions in the basic equation for the
dissipation-rate correlation, Eq. (17) which contain a product of pressure
terms of the form “ip̃ “

−

jp̃Œ. We recall the relation N2p̃=−“iuj “jui obtained
from the Navier–Stokes equation using incompressibility. Either from
dimensional analysis of this equation or from the fact that for an incom-
pressible flow the energy flux density is given by ruF(u2/2+p) we would
expect terms such as Odui duj “i p̃ “

−

j p̃ŒP to scale as the second derivative of
a sixth-order structure function. However, writing the pressure in terms of
the velocities involves long-ranged kernels and in this appendix we argue
that nevertheless the terms do not contribute terms more dominant than the
ones we have discussed. The relation for p̃ in terms of the velocities can be
rewritten as N2p̃=−“i“j dui duj, (where dui=ui − u −

i), since u −

i — ui(xFŒ, tŒ) is
independent of xF. With a similar expression for the primed variables we can
obtain derivatives of dp̃=p − pŒ. Since, RF=(xF+xFŒ)/2 and rF=xF− xFŒ we
have “/“R i=“/“xi+“/“x −

i and “/“ri=(1/2)(“/“xi − “/“x −

i). Using these
one can show that

N2
R dp̃=N2p̃ − NŒ

2p̃Œ=−(“i“j − “
−

i“
−

j) dui duj=−2
“

“R i

“

“rj
dui duj. (E.1)

This equation can be inverted formally using the Coulomb kernel to obtain

dp̃=
1

2p
F d3RŒ

1
|RF − RF Œ|

“

“R −

k

“

“rl
duk(RF Œ, rF) dul(RF Œ, rF) (E.2)

where we have duk(RF Œ, rF) — uk(RF Œ+rF/2) − uk(RF Œ − rF/2) etc. From the
above equation we obtain the useful result

“dp̃
“R i

=−
1

2p
F d3RŒ

“
2

“R iR
−

k

5 1
|RF − RF Œ|

6 “

“rl
duk(RF Œ, rF) dul(RF Œ, rF). (E.3)
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The kernel defined by

Kik(RF , RF Œ)=
“

2

“R iR
−

k

5 1
|RF − RF Œ|

6 (E.4)

is quadrupolar and decays more rapidly than a simple Coulombic form: for
example, the integral over space of Kij(RF ) is conditionally convergent. It
is straightforward to obtain, in a similar fashion, the following result for
Dp̃=p̃(RF+rF/2)+p̃(RF − rF/2):

“Dp̃
“R i

=−
1

2p
F d3RŒ Kik(RF , RF Œ)

“

“rl

× [uk(RF Œ+rF/2) ul(RF Œ+rF/2) − uk(RF Œ − rF/2) ul(RF Œ − rF/2)] (E.5)

We use the expressions given above to investigate the pressure terms
containing “ip̃ “

−

jp̃Œ in Eq. (19). Consider the term

Odui duj “i p̃ “
−

j p̃ŒP=
1
4
7dui duj

1“Dp̃
“R i

“Dp̃
“Rj

−
“dp̃
“R i

“dp̃
“Rj

28 .

Using the above identities we have

7dui duj
“dp̃
“R i

“dp̃
“Rj

8

3 F d3RŒ F d3Rœ Kik(RF , RF Œ) Kjm(RF , RF œ)

×7dui duj
“

“rl
duk(RF Œ, rF) dul(RF Œ, rF)

“

“rn
dum(RF œ, rF) dun(RF œ, rF)8 . (E.6)

The above expression involves integrals over multipoint velocity structure
functions, a product of three different differences of velocities at points
separated by the same rF, located, however, at RF , RF Œ, and RF œ. We have to
investigate the dominant contributions from the expectation values appro-
priately integrated over the quadrupolar kernels. First we note that

“
2

“R iRj

5 1
|RF |

6=
dij − 3R iRj/R2

R3 +
4p

3
dij d(RF ).

The delta function terms yield in Eq. (E.6)

7dui duj
“

“rl
dui dul

“

“rn
duj dun

8
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which is essentially of the form “
2S6/“r2, a term obtained before. For large

separations, i.e., |RF Œ − RF | and |RF œ − RF | ± r we expect the expectation value
to factorize and these will either vanish (the angular quadrupolar integrals
average out) or at most yield terms of lower order, S2 “

2S4/“r2 when
RF Œ % RF œ. For |RF Œ − RF | and |RF œ − RF | % r, the quadrupolar kernels along with
the volume element is dimensionless and the angular part causes the
integrand to fluctuate yielding a contribution that will not dominate the
delta function terms which unambiguously yield m1=2 − z6. The other
integrals can be analyzed similarly. Thus we expect the pressure terms in
Eq. (19) to yield terms no more dominant than the ones obtained by us
from the pressure-independent contributions.
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